Papers
Topics
Authors
Recent
2000 character limit reached

Temporal Dynamic Model for Resting State fMRI Data: A Neural Ordinary Differential Equation approach

Published 16 Nov 2020 in eess.SP and cs.LG | (2011.08146v1)

Abstract: The objective of this paper is to provide a temporal dynamic model for resting state functional Magnetic Resonance Imaging (fMRI) trajectory to predict future brain images based on the given sequence. To this end, we came up with the model that takes advantage of representation learning and Neural Ordinary Differential Equation (Neural ODE) to compress the fMRI image data into latent representation and learn to predict the trajectory following differential equation. Latent space was analyzed by Gaussian Mixture Model. The learned fMRI trajectory embedding can be used to explain the variance of the trajectory and predict human traits for each subject. This method achieves average 0.5 spatial correlation for the whole predicted trajectory, and provide trained ODE parameter for further analysis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.