Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ZeroMat: Solving Cold-start Problem of Recommender System with No Input Data (2112.03084v1)

Published 6 Dec 2021 in cs.IR

Abstract: Recommender system is an applicable technique in most E-commerce commercial product technical designs. However, nearly all recommender system faces a challenge called the cold-start problem. The problem is so notorious that almost every industrial practitioner needs to resolve this issue when building recommender systems. Most cold-start problem solvers need some kind of data input as the starter of the system. On the other hand, many real-world applications place popular items or random items as recommendation results. In this paper, we propose a new technique called ZeroMat that requries no input data at all and predicts the user item rating data that is competitive in Mean Absolute Error and fairness metric compared with the classic matrix factorization with affluent data, and much better performance than random placement.

Citations (19)

Summary

We haven't generated a summary for this paper yet.