Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parking functions, multi-shuffle, and asymptotic phenomena (2112.02251v1)

Published 4 Dec 2021 in math.CO and math.PR

Abstract: Given a positive-integer-valued vector $u=(u_1, \dots, u_m)$ with $u_1<\cdots<u_m$. A $u$-parking function of length $m$ is a sequence $\pi=(\pi_1, \dots, \pi_m)$ of positive integers whose non-decreasing rearrangement $(\lambda_1, \dots, \lambda_m)$ satisfies $\lambda_i\leq u_i$ for all $1\leq i\leq m$. We introduce a combinatorial construction termed a parking function multi-shuffle to generic $u$-parking functions and obtain an explicit characterization of multiple parking coordinates. As an application, we derive various asymptotic probabilistic properties of a uniform $u$-parking function when $u_i=cm+ib$. The asymptotic scenario in the generic situation $c\>0$ is in sharp contrast with that of the special situation $c=0$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube