Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Probabilistic $(m,n)$-Parking Functions (2502.00269v1)

Published 1 Feb 2025 in math.PR and math.CO

Abstract: In this article, we establish new results on the probabilistic parking model (introduced by Durm\'ic, Han, Harris, Ribeiro, and Yin) with $m$ cars and $n$ parking spots and probability parameter $p\in[0,1]$. For any $ m \leq n$ and $p \in [0,1]$, we study the parking preference of the last car, denoted $a_m$, and determine the conditional distribution of $a_m$ and compute its expected value. We show that both formulas depict explicit dependence on the probability parameter $p$. We study the case where $m = cn $ for some $ 0 < c < 1 $ and investigate the asymptotic behavior and show that the presence of ``extra spots'' on the street significantly affects the rate at which the conditional distribution of $ a_m $ converges to the uniform distribution on $[n]$. Even for small $ \varepsilon = 1 - c $, an $ \varepsilon $-proportion of extra spots reduces the convergence rate from $ 1/\sqrt{n} $ to $ 1/n $ when $ p \neq 1/2 $. Additionally, we examine how the convergence rate depends on $c$, while keeping $n$ and $p$ fixed. We establish that as $c$ approaches zero, the total variation distance between the conditional distribution of $a_m$ and the uniform distribution on $[n]$ decreases at least linearly in $c$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube