Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction of Household-level Heat-Consumption using PSO enhanced SVR Model (2112.01908v1)

Published 3 Dec 2021 in cs.LG

Abstract: In combating climate change, an effective demand-based energy supply operation of the district energy system (DES) for heating or cooling is indispensable. As a consequence, an accurate forecast of heat consumption on the consumer side poses an important first step towards an optimal energy supply. However, due to the non-linearity and non-stationarity of heat consumption data, the prediction of the thermal energy demand of DES remains challenging. In this work, we propose a forecasting framework for thermal energy consumption within a district heating system (DHS) based on kernel Support Vector Regression (kSVR) using real-world smart meter data. Particle Swarm Optimization (PSO) is employed to find the optimal hyper-parameter for the kSVR model which leads to the superiority of the proposed methods when compared to a state-of-the-art ARIMA model. The average MAPE is reduced to 2.07% and 2.64% for the individual meter-specific forecasting and for forecasting of societal consumption, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.