Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Data-Driven Adaptation of Radar Detection via Meta-Learning (2112.01780v1)

Published 3 Dec 2021 in eess.SP

Abstract: This paper addresses the problem of fast learning of radar detectors with a limited amount of training data. In current data-driven approaches for radar detection, re-training is generally required when the operating environment changes, incurring large overhead in terms of data collection and training time. In contrast, this paper proposes two novel deep learning-based approaches that enable fast adaptation of detectors based on few data samples from a new environment. The proposed methods integrate prior knowledge regarding previously encountered radar operating environments in two different ways. One approach is based on transfer learning: it first pre-trains a detector such that it works well on data collected in previously observed environments, and then it adapts the pre-trained detector to the specific current environment. The other approach targets explicitly few-shot training via meta-learning: based on data from previous environments, it finds a common initialization that enables fast adaptation to a new environment. Numerical results validate the benefits of the proposed two approaches compared with the conventional method based on training with no prior knowledge. Furthermore, the meta-learning-based detector outperforms the transfer learning-based detector when the clutter is Gaussian.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.