Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Contrast-Classify For Semi-supervised Temporal Action Segmentation (2112.01402v2)

Published 2 Dec 2021 in cs.CV

Abstract: Temporal action segmentation classifies the action of each frame in (long) video sequences. Due to the high cost of frame-wise labeling, we propose the first semi-supervised method for temporal action segmentation. Our method hinges on unsupervised representation learning, which, for temporal action segmentation, poses unique challenges. Actions in untrimmed videos vary in length and have unknown labels and start/end times. Ordering of actions across videos may also vary. We propose a novel way to learn frame-wise representations from temporal convolutional networks (TCNs) by clustering input features with added time-proximity condition and multi-resolution similarity. By merging representation learning with conventional supervised learning, we develop an "Iterative-Contrast-Classify (ICC)" semi-supervised learning scheme. With more labelled data, ICC progressively improves in performance; ICC semi-supervised learning, with 40% labelled videos, performs similar to fully-supervised counterparts. Our ICC improves MoF by {+1.8, +5.6, +2.5}% on Breakfast, 50Salads and GTEA respectively for 100% labelled videos.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dipika Singhania (7 papers)
  2. Rahul Rahaman (6 papers)
  3. Angela Yao (101 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.