Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ExPLoit: Extracting Private Labels in Split Learning (2112.01299v2)

Published 25 Nov 2021 in cs.CR, cs.AI, and cs.LG

Abstract: Split learning is a popular technique used for vertical federated learning (VFL), where the goal is to jointly train a model on the private input and label data held by two parties. This technique uses a split-model, trained end-to-end, by exchanging the intermediate representations (IR) of the inputs and gradients of the IR between the two parties. We propose ExPLoit - a label-leakage attack that allows an adversarial input-owner to extract the private labels of the label-owner during split-learning. ExPLoit frames the attack as a supervised learning problem by using a novel loss function that combines gradient-matching and several regularization terms developed using key properties of the dataset and models. Our evaluations show that ExPLoit can uncover the private labels with near-perfect accuracy of up to 99.96%. Our findings underscore the need for better training techniques for VFL.

Citations (20)

Summary

We haven't generated a summary for this paper yet.