Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Borrowing from Similar Code: A Deep Learning NLP-Based Approach for Log Statement Automation (2112.01259v1)

Published 2 Dec 2021 in cs.SE and cs.LG

Abstract: Software developers embed logging statements inside the source code as an imperative duty in modern software development as log files are necessary for tracking down runtime system issues and troubleshooting system management tasks. However, the current logging process is mostly manual, and thus, proper placement and content of logging statements remain as challenges. To overcome these challenges, methods that aim to automate log placement and predict its content, i.e., 'where and what to log', are of high interest. Thus, we focus on predicting the location (i.e., where) and description (i.e., what) for log statements by utilizing source code clones and NLP, as these approaches provide additional context and advantage for log prediction. Specifically, we guide our research with three research questions (RQs): (RQ1) how similar code snippets, i.e., code clones, can be leveraged for log statements prediction? (RQ2) how the approach can be extended to automate log statements' descriptions? and (RQ3) how effective the proposed methods are for log location and description prediction? To pursue our RQs, we perform an experimental study on seven open-source Java projects. We introduce an updated and improved log-aware code-clone detection method to predict the location of logging statements (RQ1). Then, we incorporate NLP and deep learning methods to automate the log statements' description prediction (RQ2). Our analysis shows that our hybrid NLP and code-clone detection approach (NLP CC'd) outperforms conventional clone detectors in finding log statement locations on average by 15.60% and achieves 40.86% higher performance on BLEU and ROUGE scores for predicting the description of logging statements when compared to prior research (RQ3).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sina Gholamian (7 papers)
  2. Paul A. S. Ward (5 papers)
Citations (3)