Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LDA2Net: Digging under the surface of COVID-19 topics in scientific literature (2112.01181v2)

Published 2 Dec 2021 in cs.DL and cs.IR

Abstract: During the COVID-19 pandemic, the scientific literature related to SARS-COV-2 has been growing dramatically, both in terms of the number of publications and of its impact on people's life. This literature encompasses a varied set of sensible topics, ranging from vaccination, to protective equipment efficacy, to lockdown policy evaluation. Up to now, hundreds of thousands of papers have been uploaded on online repositories and published in scientific journals. As a result, the development of digital methods that allow an in-depth exploration of this growing literature has become a relevant issue, both to identify the topical trends of COVID-related research and to zoom-in its sub-themes. This work proposes a novel methodology, called LDA2Net, which combines topic modelling and network analysis to investigate topics under their surface. Specifically, LDA2Net exploits the frequencies of pairs of consecutive words to reconstruct the network structure of topics discussed in the Cord-19 corpus. The results suggest that the effectiveness of topic models can be magnified by enriching them with word network representations, and by using the latter to display, analyse, and explore COVID-related topics at different levels of granularity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

Summary

We haven't generated a summary for this paper yet.