Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CloudWalker: Random walks for 3D point cloud shape analysis (2112.01050v4)

Published 2 Dec 2021 in cs.CV

Abstract: Point clouds are gaining prominence as a method for representing 3D shapes, but their irregular structure poses a challenge for deep learning methods. In this paper we propose CloudWalker, a novel method for learning 3D shapes using random walks. Previous works attempt to adapt Convolutional Neural Networks (CNNs) or impose a grid or mesh structure to 3D point clouds. This work presents a different approach for representing and learning the shape from a given point set. The key idea is to impose structure on the point set by multiple random walks through the cloud for exploring different regions of the 3D object. Then we learn a per-point and per-walk representation and aggregate multiple walk predictions at inference. Our approach achieves state-of-the-art results for two 3D shape analysis tasks: classification and retrieval.

Citations (7)

Summary

We haven't generated a summary for this paper yet.