Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embedding Decomposition for Artifacts Removal in EEG Signals (2112.00989v2)

Published 2 Dec 2021 in cs.LG and eess.SP

Abstract: Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to eliminate or weaken the influence of artifacts. However, most of them rely on prior experience for analysis. Here, we propose an deep learning framework to separate neural signal and artifacts in the embedding space and reconstruct the denoised signal, which is called DeepSeparator. DeepSeparator employs an encoder to extract and amplify the features in the raw EEG, a module called decomposer to extract the trend, detect and suppress artifact and a decoder to reconstruct the denoised signal. Besides, DeepSeparator can extract the artifact, which largely increases the model interpretability. The proposed method is tested with a semi-synthetic EEG dataset and a real task-related EEG dataset, suggesting that DeepSeparator outperforms the conventional models in both EOG and EMG artifact removal. DeepSeparator can be extended to multi-channel EEG and data of any length. It may motivate future developments and application of deep learning-based EEG denoising. The code for DeepSeparator is available at https://github.com/ncclabsustech/DeepSeparator.

Citations (25)

Summary

We haven't generated a summary for this paper yet.