Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Point Cloud Instance Segmentation with Semi-supervised Bounding-Box Mining (2111.15210v2)

Published 30 Nov 2021 in cs.CV and cs.AI

Abstract: Point cloud instance segmentation has achieved huge progress with the emergence of deep learning. However, these methods are usually data-hungry with expensive and time-consuming dense point cloud annotations. To alleviate the annotation cost, unlabeled or weakly labeled data is still less explored in the task. In this paper, we introduce the first semi-supervised point cloud instance segmentation framework (SPIB) using both labeled and unlabelled bounding boxes as supervision. To be specific, our SPIB architecture involves a two-stage learning procedure. For stage one, a bounding box proposal generation network is trained under a semi-supervised setting with perturbation consistency regularization (SPCR). The regularization works by enforcing an invariance of the bounding box predictions over different perturbations applied to the input point clouds, to provide self-supervision for network learning. For stage two, the bounding box proposals with SPCR are grouped into some subsets, and the instance masks are mined inside each subset with a novel semantic propagation module and a property consistency graph module. Moreover, we introduce a novel occupancy ratio guided refinement module to refine the instance masks. Extensive experiments on the challenging ScanNet v2 dataset demonstrate our method can achieve competitive performance compared with the recent fully-supervised methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com