Document Layout Analysis with Aesthetic-Guided Image Augmentation (2111.13809v1)
Abstract: Document layout analysis (DLA) plays an important role in information extraction and document understanding. At present, document layout analysis has reached a milestone achievement, however, document layout analysis of non-Manhattan is still a challenge. In this paper, we propose an image layer modeling method to tackle this challenge. To measure the proposed image layer modeling method, we propose a manually-labeled non-Manhattan layout fine-grained segmentation dataset named FPD. As far as we know, FPD is the first manually-labeled non-Manhattan layout fine-grained segmentation dataset. To effectively extract fine-grained features of documents, we propose an edge embedding network named L-E3Net. Experimental results prove that our proposed image layer modeling method can better deal with the fine-grained segmented document of the non-Manhattan layout.
- Tianlong Ma (20 papers)
- Xingjiao Wu (26 papers)
- Xin Li (980 papers)
- Xiangcheng Du (11 papers)
- Zhao Zhou (9 papers)
- Liang Xue (13 papers)
- Cheng Jin (76 papers)