Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Modified Indicator Functions for Surface Reconstruction (2111.09526v2)

Published 18 Nov 2021 in cs.CV and cs.GR

Abstract: Surface reconstruction is a fundamental problem in 3D graphics. In this paper, we propose a learning-based approach for implicit surface reconstruction from raw point clouds without normals. Our method is inspired by Gauss Lemma in potential energy theory, which gives an explicit integral formula for the indicator functions. We design a novel deep neural network to perform surface integral and learn the modified indicator functions from un-oriented and noisy point clouds. We concatenate features with different scales for accurate point-wise contributions to the integral. Moreover, we propose a novel Surface Element Feature Extractor to learn local shape properties. Experiments show that our method generates smooth surfaces with high normal consistency from point clouds with different noise scales and achieves state-of-the-art reconstruction performance compared with current data-driven and non-data-driven approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dong Xiao (13 papers)
  2. Siyou Lin (8 papers)
  3. Zuoqiang Shi (75 papers)
  4. Bin Wang (750 papers)
Citations (7)