Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Tradeoff between Energy, Precision, and Accuracy in Federated Quantized Neural Networks (2111.07911v4)

Published 15 Nov 2021 in cs.LG and cs.NI

Abstract: Deploying federated learning (FL) over wireless networks with resource-constrained devices requires balancing between accuracy, energy efficiency, and precision. Prior art on FL often requires devices to train deep neural networks (DNNs) using a 32-bit precision level for data representation to improve accuracy. However, such algorithms are impractical for resource-constrained devices since DNNs could require execution of millions of operations. Thus, training DNNs with a high precision level incurs a high energy cost for FL. In this paper, a quantized FL framework, that represents data with a finite level of precision in both local training and uplink transmission, is proposed. Here, the finite level of precision is captured through the use of quantized neural networks (QNNs) that quantize weights and activations in fixed-precision format. In the considered FL model, each device trains its QNN and transmits a quantized training result to the base station. Energy models for the local training and the transmission with the quantization are rigorously derived. An energy minimization problem is formulated with respect to the level of precision while ensuring convergence. To solve the problem, we first analytically derive the FL convergence rate and use a line search method. Simulation results show that our FL framework can reduce energy consumption by up to 53% compared to a standard FL model. The results also shed light on the tradeoff between precision, energy, and accuracy in FL over wireless networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Minsu Kim (115 papers)
  2. Walid Saad (378 papers)
  3. Mohammad Mozaffari (37 papers)
  4. Merouane Debbah (269 papers)
Citations (21)
Youtube Logo Streamline Icon: https://streamlinehq.com