Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances (2111.07035v2)

Published 13 Nov 2021 in cs.LG and cs.CR

Abstract: Deep learning models have been used for a wide variety of tasks. They are prevalent in computer vision, natural language processing, speech recognition, and other areas. While these models have worked well under many scenarios, it has been shown that they are vulnerable to adversarial attacks. This has led to a proliferation of research into ways that such attacks could be identified and/or defended against. Our goal is to explore the contribution that can be attributed to using multiple underlying models for the purpose of adversarial instance detection. Our paper describes two approaches that incorporate representations from multiple models for detecting adversarial examples. We devise controlled experiments for measuring the detection impact of incrementally utilizing additional models. For many of the scenarios we consider, the results show that performance increases with the number of underlying models used for extracting representations.

Summary

We haven't generated a summary for this paper yet.