Upper and lower bounds for Dunkl heat kernel (2111.03513v2)
Abstract: On $\mathbb RN$ equipped with a normalized root system $R$, a multiplicity function $k(\alpha) > 0$, and the associated measure $$ dw(\mathbf x)=\prod_{\alpha\in R}|\langle \mathbf x,\alpha\rangle|{k(\alpha)}\, d\mathbf x, $$ let $h_t(\mathbf x,\mathbf y)$ denote the heat kernel of the semigroup generated by the Dunkl Laplace operator $\Delta_k$. Let $d(\mathbf x,\mathbf y)=\min_{\sigma\in G} | \mathbf x-\sigma(\mathbf y)|$, where $G$ is the reflection group associated with $R$. We derive the following upper and lower bounds for $h_t(\mathbf x,\mathbf y)$: for all $c_l>1/4$ and $0<c_u\<1/4$ there are constants $C_l,C_u\>0$ such that $$ C_{l}w(B(\mathbf{x},\sqrt{t})){-1}e{-c_{l}\frac{d(\mathbf{x},\mathbf{y})2}{t}} \Lambda(\mathbf x,\mathbf y,t) \leq h_t(\mathbf{x},\mathbf{y}) \leq C_{u}w(B(\mathbf{x},\sqrt{t})){-1}e{-c_{u}\frac{d(\mathbf{x},\mathbf{y})2}{t}} \Lambda(\mathbf x,\mathbf y,t), $$ where $\Lambda(\mathbf x,\mathbf y,t)$ can be expressed by means of some rational functions of $| \mathbf x-\sigma(\mathbf y)|/\sqrt{t}$. An exact formula for $\Lambda(\mathbf x,\mathbf y,t)$ is provided.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.