Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Dunkl Schrödinger semigroups with Green bounded potentials (2204.03443v1)

Published 7 Apr 2022 in math.FA

Abstract: On $\mathbb RN$ equipped with a normalized root system $R$, a multiplicity function $k(\alpha) > 0$, and the associated measure $$ dw(\mathbf x)=\prod_{\alpha\in R}|\langle \mathbf x,\alpha\rangle|{k(\alpha)}\, d\mathbf x, $$ we consider a Dunkl Schr\"odinger operator $L=-\Delta_k+V$, where $\Delta_k$ is the Dunkl Laplace operator and $V\in L1_{\rm loc} (dw)$ is a non-negative potential. Let $h_t(\mathbf x,\mathbf y)$ and $k{{V}}_t(\mathbf x,\mathbf y)$ denote the Dunkl heat kernel and the integral kernel of the semigroup generated by $-L$ respectively. We prove that $k{{V}}_t(\mathbf x,\mathbf y)$ satisfies the following heat kernel lower bounds: there are constants $C, c>0$ such that $$ h_{ct}(\mathbf x,\mathbf y)\leq C k{{V}}_t(\mathbf x,\mathbf y)$$ if and only if $$ \sup_{\mathbf x\in\mathbb RN} \int_0\infty \int_{\mathbb RN} V(\mathbf y)w(B(\mathbf x,\sqrt{t})){-1}e{-|\mathbf x-\mathbf y|2/t}\, dw(\mathbf y)\, dt<\infty, $$ where $B(\mathbf x,\sqrt{t})$ stands for the Euclidean ball centered at $\mathbf x \in \mathbb{R}N$ and radius $\sqrt{t}$.

Summary

We haven't generated a summary for this paper yet.