Testing using Privileged Information by Adapting Features with Statistical Dependence (2111.02865v1)
Abstract: Given an imperfect predictor, we exploit additional features at test time to improve the predictions made, without retraining and without knowledge of the prediction function. This scenario arises if training labels or data are proprietary, restricted, or no longer available, or if training itself is prohibitively expensive. We assume that the additional features are useful if they exhibit strong statistical dependence to the underlying perfect predictor. Then, we empirically estimate and strengthen the statistical dependence between the initial noisy predictor and the additional features via manifold denoising. As an example, we show that this approach leads to improvement in real-world visual attribute ranking. Project webpage: http://www.jamestompkin.com/tupi
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.