Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Riemannian Acceleration via a Proximal Extragradient Framework (2111.02763v2)

Published 4 Nov 2021 in math.OC, cs.LG, and stat.ML

Abstract: We contribute to advancing the understanding of Riemannian accelerated gradient methods. In particular, we revisit Accelerated Hybrid Proximal Extragradient(A-HPE), a powerful framework for obtaining Euclidean accelerated methods \citep{monteiro2013accelerated}. Building on A-HPE, we then propose and analyze Riemannian A-HPE. The core of our analysis consists of two key components: (i) a set of new insights into Euclidean A-HPE itself; and (ii) a careful control of metric distortion caused by Riemannian geometry. We illustrate our framework by obtaining a few existing and new Riemannian accelerated gradient methods as special cases, while characterizing their acceleration as corollaries of our main results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.