Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Voice Conversion Can Improve ASR in Very Low-Resource Settings (2111.02674v2)

Published 4 Nov 2021 in eess.AS, cs.CL, and cs.SD

Abstract: Voice conversion (VC) could be used to improve speech recognition systems in low-resource languages by using it to augment limited training data. However, VC has not been widely used for this purpose because of practical issues such as compute speed and limitations when converting to and from unseen speakers. Moreover, it is still unclear whether a VC model trained on one well-resourced language can be applied to speech from another low-resource language for the aim of data augmentation. In this work we assess whether a VC system can be used cross-lingually to improve low-resource speech recognition. We combine several recent techniques to design and train a practical VC system in English, and then use this system to augment data for training speech recognition models in several low-resource languages. When using a sensible amount of VC augmented data, speech recognition performance is improved in all four low-resource languages considered. We also show that VC-based augmentation is superior to SpecAugment (a widely used signal processing augmentation method) in the low-resource languages considered.

Citations (12)

Summary

We haven't generated a summary for this paper yet.