Papers
Topics
Authors
Recent
Search
2000 character limit reached

Recurrent Neural Network Training with Convex Loss and Regularization Functions by Extended Kalman Filtering

Published 4 Nov 2021 in cs.LG, cs.SY, eess.SY, and math.OC | (2111.02673v3)

Abstract: This paper investigates the use of extended Kalman filtering to train recurrent neural networks with rather general convex loss functions and regularization terms on the network parameters, including $\ell_1$-regularization. We show that the learning method is competitive with respect to stochastic gradient descent in a nonlinear system identification benchmark and in training a linear system with binary outputs. We also explore the use of the algorithm in data-driven nonlinear model predictive control and its relation with disturbance models for offset-free closed-loop tracking.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.