Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Meta-Learned Neuron model for Continual Learning (2111.02557v1)

Published 3 Nov 2021 in cs.LG, cs.AI, and cs.NE

Abstract: Continual learning is the ability to acquire new knowledge without forgetting the previously learned one, assuming no further access to past training data. Neural network approximators trained with gradient descent are known to fail in this setting as they must learn from a stream of data-points sampled from a stationary distribution to converge. In this work, we replace the standard neuron by a meta-learned neuron model whom inference and update rules are optimized to minimize catastrophic interference. Our approach can memorize dataset-length sequences of training samples, and its learning capabilities generalize to any domain. Unlike previous continual learning methods, our method does not make any assumption about how tasks are constructed, delivered and how they relate to each other: it simply absorbs and retains training samples one by one, whether the stream of input data is time-correlated or not.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Rodrigue Siry (3 papers)

Summary

We haven't generated a summary for this paper yet.