Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Pretrained Language Model for Dialogue Policy Learning (2111.01398v1)

Published 2 Nov 2021 in cs.CL and cs.AI

Abstract: Reinforcement Learning (RL) has been witnessed its potential for training a dialogue policy agent towards maximizing the accumulated rewards given from users. However, the reward can be very sparse for it is usually only provided at the end of a dialog session, which causes unaffordable interaction requirements for an acceptable dialog agent. Distinguished from many efforts dedicated to optimizing the policy and recovering the reward alternatively which suffers from easily getting stuck in local optima and model collapse, we decompose the adversarial training into two steps: 1) we integrate a pre-trained LLM as a discriminator to judge whether the current system action is good enough for the last user action (i.e., \textit{next action prediction}); 2) the discriminator gives and extra local dense reward to guide the agent's exploration. The experimental result demonstrates that our method significantly improves the complete rate (~4.4\%) and success rate (~8.0\%) of the dialogue system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hongru Wang (62 papers)
  2. Huimin Wang (24 papers)
  3. Zezhong Wang (30 papers)
  4. Kam-Fai Wong (92 papers)
Citations (7)