Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of network topology on efficiency of proximity measures for community detection (2111.01229v1)

Published 1 Nov 2021 in cs.SI

Abstract: Many community detection algorithms require the introduction of a measure on the set of nodes. Previously, a lot of efforts have been made to find the top-performing measures. In most cases, experiments were conducted on several datasets or random graphs. However, graphs representing real systems can be completely different in topology: the difference can be in the size of the network, the structure of clusters, the distribution of degrees, the density of edges, and so on. Therefore, it is necessary to explicitly check whether the advantage of one measure over another is preserved for different network topologies. In this paper, we consider the efficiency of several proximity measures for clustering networks with different structures. The results show that the efficiency of measures really depends on the network topology in some cases. However, it is possible to find measures that behave well for most topologies.

Citations (4)

Summary

We haven't generated a summary for this paper yet.