Hybrid Method for Simulation of a Fractional COVID-19 Model with Real Case Application
Abstract: In this research, we provide a mathematical analysis for the novel coronavirus responsible for COVID-19, which continues to be a big source of threat for humanity. Our fractional-order analysis is carried out using a non-singular kernel type operator known as the Atangana--Baleanu--Caputo (ABC) derivative. We parametrize the model adopting available information of the disease from Pakistan in the period 9th April to 2nd June 2020. We obtain the required solution with the help of a hybrid method, which is a combination of the decomposition method and the Laplace transform. Furthermore, a sensitivity analysis is carried out to evaluate the parameters that are more sensitive to the basic reproduction number of the model. Our results are compared with the real data of Pakistan and numerical plots are presented at various fractional orders.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.