Papers
Topics
Authors
Recent
Search
2000 character limit reached

Communication-Compressed Adaptive Gradient Method for Distributed Nonconvex Optimization

Published 1 Nov 2021 in cs.LG, cs.AI, cs.DC, math.OC, and stat.ML | (2111.00705v2)

Abstract: Due to the explosion in the size of the training datasets, distributed learning has received growing interest in recent years. One of the major bottlenecks is the large communication cost between the central server and the local workers. While error feedback compression has been proven to be successful in reducing communication costs with stochastic gradient descent (SGD), there are much fewer attempts in building communication-efficient adaptive gradient methods with provable guarantees, which are widely used in training large-scale machine learning models. In this paper, we propose a new communication-compressed AMSGrad for distributed nonconvex optimization problem, which is provably efficient. Our proposed distributed learning framework features an effective gradient compression strategy and a worker-side model update design. We prove that the proposed communication-efficient distributed adaptive gradient method converges to the first-order stationary point with the same iteration complexity as uncompressed vanilla AMSGrad in the stochastic nonconvex optimization setting. Experiments on various benchmarks back up our theory.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.