Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Neural Network based scheduling : Improved throughput under a generalized interference model (2111.00459v1)

Published 31 Oct 2021 in eess.SY, cs.IT, cs.LG, cs.NI, cs.SY, and math.IT

Abstract: In this work, we propose a Graph Convolutional Neural Networks (GCN) based scheduling algorithm for adhoc networks. In particular, we consider a generalized interference model called the $k$-tolerant conflict graph model and design an efficient approximation for the well-known Max-Weight scheduling algorithm. A notable feature of this work is that the proposed method do not require labelled data set (NP-hard to compute) for training the neural network. Instead, we design a loss function that utilises the existing greedy approaches and trains a GCN that improves the performance of greedy approaches. Our extensive numerical experiments illustrate that using our GCN approach, we can significantly ($4$-$20$ percent) improve the performance of the conventional greedy approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.