Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A decomposition for Levy processes inspected at Poisson moments (2110.12256v1)

Published 23 Oct 2021 in math.PR

Abstract: We consider a L\'evy process $Y(t)$ that is not permanently observed, but rather inspected at Poisson($\omega$) moments only, over an exponentially distributed time $T_\beta$ with parameter $\beta$. The focus lies on the analysis of the distribution of the running maximum at such inspection moments up to $T_\beta$, denoted by $Y_{\beta,\omega}$. Our main result is a decomposition: we derive a remarkable distributional equality that contains $Y_{\beta,\omega}$ as well as the running maximum process $\bar Y(t)$ at the exponentially distributed times $T_\beta$ and $T_{\beta+\omega}$. Concretely, $\overline{Y}(T_\beta)$ can be written the sum of the two independent random variables that are distributed as $Y_{\beta,\omega}$ and $\overline{Y}(T_{\beta+\omega})$. The distribution of $Y_{\beta,\omega}$ can be identified more explicitly in the two special cases of a spectrally positive and a spectrally negative L\'evy process. As an illustrative example of the potential of our results, we show how to determine the asymptotic behavior of the bankruptcy probability in the Cram\'er-Lundberg insurance risk model.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.