Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Predictive Control for Connected and Autonomous Vehicles in Mixed Traffic (2110.10097v2)

Published 19 Oct 2021 in eess.SY and cs.SY

Abstract: Cooperative control of Connected and Autonomous Vehicles (CAVs) promises great benefits for mixed traffic. Most existing research focuses on model-based control strategies, assuming that car-following dynamics of human-driven vehicles are explicitly known. In this paper, instead of relying on a parametric car-following model, we introduce a data-driven predictive control strategy to achieve safe and optimal control for CAVs in mixed traffic. We first present a linearized dynamical model for mixed traffic systems, and investigate its controllability and observability. Based on these control-theoretic properties, we then propose a novel DeeP-LCC (Data-EnablEd Predictive Leading Cruise Control) strategy for CAVs based on measurable driving data to smooth mixed traffic. Our method is implemented in a receding horizon manner, in which input/output constraints are incorporated to achieve collision-free guarantees. Nonlinear traffic simulations reveal its saving of up to 24.96% fuel consumption during a braking scenario of Extra-Urban Driving Cycle while ensuring safety.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiawei Wang (128 papers)
  2. Yang Zheng (124 papers)
  3. Qing Xu (71 papers)
  4. Keqiang Li (56 papers)
Citations (23)