Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explaining Deep Tractable Probabilistic Models: The sum-product network case (2110.09778v2)

Published 19 Oct 2021 in cs.LG

Abstract: We consider the problem of explaining a class of tractable deep probabilistic models, the Sum-Product Networks (SPNs) and present an algorithm ExSPN to generate explanations. To this effect, we define the notion of a context-specific independence tree(CSI-tree) and present an iterative algorithm that converts an SPN to a CSI-tree. The resulting CSI-tree is both interpretable and explainable to the domain expert. We achieve this by extracting the conditional independencies encoded by the SPN and approximating the local context specified by the structure of the SPN. Our extensive empirical evaluations on synthetic, standard, and real-world clinical data sets demonstrate that the CSI-tree exhibits superior explainability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.