Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Image Outpainting with Semantic Layout Prediction (2110.09267v1)

Published 18 Oct 2021 in cs.CV

Abstract: The objective of image outpainting is to extend image current border and generate new regions based on known ones. Previous methods adopt generative adversarial networks (GANs) to synthesize realistic images. However, the lack of explicit semantic representation leads to blurry and abnormal image pixels when the outpainting areas are complex and with various objects. In this work, we decompose the outpainting task into two stages. Firstly, we train a GAN to extend regions in semantic segmentation domain instead of image domain. Secondly, another GAN model is trained to synthesize real images based on the extended semantic layouts. The first model focuses on low frequent context such as sizes, classes and other semantic cues while the second model focuses on high frequent context like color and texture. By this design, our approach can handle semantic clues more easily and hence works better in complex scenarios. We evaluate our framework on various datasets and make quantitative and qualitative analysis. Experiments demonstrate that our method generates reasonable extended semantic layouts and images, outperforming state-of-the-art models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.