Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Option Transfer and SMDP Abstraction with Successor Features (2110.09196v2)

Published 18 Oct 2021 in cs.LG and cs.AI

Abstract: Abstraction plays an important role in the generalisation of knowledge and skills and is key to sample efficient learning. In this work, we study joint temporal and state abstraction in reinforcement learning, where temporally-extended actions in the form of options induce temporal abstractions, while aggregation of similar states with respect to abstract options induces state abstractions. Many existing abstraction schemes ignore the interplay of state and temporal abstraction. Consequently, the considered option policies often cannot be directly transferred to new environments due to changes in the state space and transition dynamics. To address this issue, we propose a novel abstraction scheme building on successor features. This includes an algorithm for transferring abstract options across different environments and a state abstraction mechanism that allows us to perform efficient planning with the transferred options.

Citations (1)

Summary

We haven't generated a summary for this paper yet.