Papers
Topics
Authors
Recent
Search
2000 character limit reached

When Are Linear Stochastic Bandits Attackable?

Published 18 Oct 2021 in cs.LG and cs.CR | (2110.09008v2)

Abstract: We study adversarial attacks on linear stochastic bandits: by manipulating the rewards, an adversary aims to control the behaviour of the bandit algorithm. Perhaps surprisingly, we first show that some attack goals can never be achieved. This is in sharp contrast to context-free stochastic bandits, and is intrinsically due to the correlation among arms in linear stochastic bandits. Motivated by this finding, this paper studies the attackability of a $k$-armed linear bandit environment. We first provide a complete necessity and sufficiency characterization of attackability based on the geometry of the arms' context vectors. We then propose a two-stage attack method against LinUCB and Robust Phase Elimination. The method first asserts whether the given environment is attackable; and if yes, it poisons the rewards to force the algorithm to pull a target arm linear times using only a sublinear cost. Numerical experiments further validate the effectiveness and cost-efficiency of the proposed attack method.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.