Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Action-Manipulation Attacks Against Stochastic Bandits: Attacks and Defense (2002.08000v2)

Published 19 Feb 2020 in cs.LG, cs.CR, math.OC, and stat.ML

Abstract: Due to the broad range of applications of stochastic multi-armed bandit model, understanding the effects of adversarial attacks and designing bandit algorithms robust to attacks are essential for the safe applications of this model. In this paper, we introduce a new class of attack named action-manipulation attack. In this attack, an adversary can change the action signal selected by the user. We show that without knowledge of mean rewards of arms, our proposed attack can manipulate Upper Confidence Bound (UCB) algorithm, a widely used bandit algorithm, into pulling a target arm very frequently by spending only logarithmic cost. To defend against this class of attacks, we introduce a novel algorithm that is robust to action-manipulation attacks when an upper bound for the total attack cost is given. We prove that our algorithm has a pseudo-regret upper bounded by $\mathcal{O}(\max{\log T,A})$, where $T$ is the total number of rounds and $A$ is the upper bound of the total attack cost.

Citations (16)

Summary

We haven't generated a summary for this paper yet.