Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variance Reduction based Experience Replay for Policy Optimization (2110.08902v4)

Published 17 Oct 2021 in cs.LG and cs.AI

Abstract: For reinforcement learning on complex stochastic systems, it is desirable to effectively leverage the information from historical samples collected in previous iterations to accelerate policy optimization. Classical experience replay, while effective, treats all observations uniformly, neglecting their relative importance. To address this limitation, we introduce a novel Variance Reduction Experience Replay (VRER) framework, enabling the selective reuse of relevant samples to improve policy gradient estimation. VRER, as an adaptable method that can seamlessly integrate with different policy optimization algorithms, forms the foundation of our sample efficient off-policy learning algorithm known as Policy Gradient with VRER (PG-VRER). Furthermore, the lack of a rigorous understanding of the experience replay approach in the literature motivates us to introduce a novel theoretical framework that accounts for sample dependencies induced by Markovian noise and behavior policy interdependencies. This framework is then employed to analyze the finite-time convergence of the proposed PG-VRER algorithm, revealing a crucial bias-variance trade-off in policy gradient estimation: the reuse of older experience tends to introduce a larger bias while simultaneously reducing gradient estimation variance. Extensive experiments have shown that VRER offers a notable and consistent acceleration in learning optimal policies and enhances the performance of state-of-the-art (SOTA) policy optimization approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hua Zheng (76 papers)
  2. Wei Xie (151 papers)
  3. M. Ben Feng (2 papers)

Summary

We haven't generated a summary for this paper yet.