Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 163 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Variational Bayesian Approach to Learning Latent Variables for Acoustic Knowledge Transfer (2110.08598v2)

Published 16 Oct 2021 in eess.AS, cs.AI, cs.LG, cs.NE, and cs.SD

Abstract: We propose a variational Bayesian (VB) approach to learning distributions of latent variables in deep neural network (DNN) models for cross-domain knowledge transfer, to address acoustic mismatches between training and testing conditions. Instead of carrying out point estimation in conventional maximum a posteriori estimation with a risk of having a curse of dimensionality in estimating a huge number of model parameters, we focus our attention on estimating a manageable number of latent variables of DNNs via a VB inference framework. To accomplish model transfer, knowledge learnt from a source domain is encoded in prior distributions of latent variables and optimally combined, in a Bayesian sense, with a small set of adaptation data from a target domain to approximate the corresponding posterior distributions. Experimental results on device adaptation in acoustic scene classification show that our proposed VB approach can obtain good improvements on target devices, and consistently outperforms 13 state-of-the-art knowledge transfer algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.