Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Style Transfer via Variational AutoEncoder (2110.07375v1)

Published 13 Oct 2021 in cs.CV and eess.IV

Abstract: Modern works on style transfer focus on transferring style from a single image. Recently, some approaches study multiple style transfer; these, however, are either too slow or fail to mix multiple styles. We propose ST-VAE, a Variational AutoEncoder for latent space-based style transfer. It performs multiple style transfer by projecting nonlinear styles to a linear latent space, enabling to merge styles via linear interpolation before transferring the new style to the content image. To evaluate ST-VAE, we experiment on COCO for single and multiple style transfer. We also present a case study revealing that ST-VAE outperforms other methods while being faster, flexible, and setting a new path for multiple style transfer.

Citations (17)

Summary

We haven't generated a summary for this paper yet.