Confining integro-differential equations originating from evolutionary biology: ground states and long time dynamics
Abstract: We consider nonlinear mutation selection models, known as replicator-mutator equations in evolutionary biology. They involve a nonlocal mutation kernel and a confining fitness potential. We prove that the long time behaviour of the Cauchy problem is determined by the principal eigenelement of the underlying linear operator. The novelties compared to the literature on these models are about the case of symmetric mutations: we propose a new milder sufficient condition for the existence of a principal eigenfunction, and we provide what is to our knowledge the first quantification of the spectral gap. We also recover existing results in the non-symmetric case, through a new approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.