Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Timbre Disentanglement in Non-Autoregressive Cross-Lingual Text-to-Speech (2110.07192v3)

Published 14 Oct 2021 in eess.AS and cs.SD

Abstract: In this paper, we study the disentanglement of speaker and language representations in non-autoregressive cross-lingual TTS models from various aspects. We propose a phoneme length regulator that solves the length mismatch problem between IPA input sequence and monolingual alignment results. Using the phoneme length regulator, we present a FastPitch-based cross-lingual model with IPA symbols as input representations. Our experiments show that language-independent input representations (e.g. IPA symbols), an increasing number of training speakers, and explicit modeling of speech variance information all encourage non-autoregressive cross-lingual TTS model to disentangle speaker and language representations. The subjective evaluation shows that our proposed model can achieve decent naturalness and speaker similarity in cross-language voice cloning.

Citations (4)

Summary

We haven't generated a summary for this paper yet.