Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual learning using lattice-free MMI for speech recognition (2110.07055v1)

Published 13 Oct 2021 in eess.AS and cs.CL

Abstract: Continual learning (CL), or domain expansion, recently became a popular topic for automatic speech recognition (ASR) acoustic modeling because practical systems have to be updated frequently in order to work robustly on types of speech not observed during initial training. While sequential adaptation allows tuning a system to a new domain, it may result in performance degradation on the old domains due to catastrophic forgetting. In this work we explore regularization-based CL for neural network acoustic models trained with the lattice-free maximum mutual information (LF-MMI) criterion. We simulate domain expansion by incrementally adapting the acoustic model on different public datasets that include several accents and speaking styles. We investigate two well-known CL techniques, elastic weight consolidation (EWC) and learning without forgetting (LWF), which aim to reduce forgetting by preserving model weights or network outputs. We additionally introduce a sequence-level LWF regularization, which exploits posteriors from the denominator graph of LF-MMI to further reduce forgetting. Empirical results show that the proposed sequence-level LWF can improve the best average word error rate across all domains by up to 9.4% relative compared with using regular LWF.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hossein Hadian (1 paper)
  2. Arseniy Gorin (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.