Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Codabench: Flexible, Easy-to-Use and Reproducible Benchmarking Platform (2110.05802v2)

Published 12 Oct 2021 in cs.LG and cs.DC

Abstract: Obtaining standardized crowdsourced benchmark of computational methods is a major issue in data science communities. Dedicated frameworks enabling fair benchmarking in a unified environment are yet to be developed. Here we introduce Codabench, an open-source, community-driven platform for benchmarking algorithms or software agents versus datasets or tasks. A public instance of Codabench (https://www.codabench.org/) is open to everyone, free of charge, and allows benchmark organizers to compare fairly submissions, under the same setting (software, hardware, data, algorithms), with custom protocols and data formats. Codabench has unique features facilitating the organization of benchmarks flexibly, easily and reproducibly, such as the possibility of re-using templates of benchmarks, and supplying compute resources on-demand. Codabench has been used internally and externally on various applications, receiving more than 130 users and 2500 submissions. As illustrative use cases, we introduce 4 diverse benchmarks covering Graph Machine Learning, Cancer Heterogeneity, Clinical Diagnosis and Reinforcement Learning.

Citations (38)

Summary

We haven't generated a summary for this paper yet.