Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical prosody modeling and control in non-autoregressive parallel neural TTS (2110.02952v2)

Published 6 Oct 2021 in eess.AS and cs.CL

Abstract: Neural text-to-speech (TTS) synthesis can generate speech that is indistinguishable from natural speech. However, the synthetic speech often represents the average prosodic style of the database instead of having more versatile prosodic variation. Moreover, many models lack the ability to control the output prosody, which does not allow for different styles for the same text input. In this work, we train a non-autoregressive parallel neural TTS front-end model hierarchically conditioned on both coarse and fine-grained acoustic speech features to learn a latent prosody space with intuitive and meaningful dimensions. Experiments show that a non-autoregressive TTS model hierarchically conditioned on utterance-wise pitch, pitch range, duration, energy, and spectral tilt can effectively control each prosodic dimension, generate a wide variety of speaking styles, and provide word-wise emphasis control, while maintaining equal or better quality to the baseline model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tuomo Raitio (8 papers)
  2. Jiangchuan Li (6 papers)
  3. Shreyas Seshadri (3 papers)
Citations (20)