Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequence to Sequence Neural Speech Synthesis with Prosody Modification Capabilities (1909.10302v1)

Published 23 Sep 2019 in eess.AS and cs.SD

Abstract: Modern sequence to sequence neural TTS systems provide close to natural speech quality. Such systems usually comprise a network converting linguistic/phonetic features sequence to an acoustic features sequence, cascaded with a neural vocoder. The generated speech prosody (i.e. phoneme durations, pitch and loudness) is implicitly present in the acoustic features, being mixed with spectral information. Although the speech sounds natural, its prosody realization is randomly chosen and cannot be easily altered. The prosody control becomes an even more difficult task if no prosodic labeling is present in the training data. Recently, much progress has been achieved in unsupervised speaking style learning and generation, however human inspection is still required after the training for discovery and interpretation of the speaking styles learned by the system. In this work we introduce a fully automatic method that makes the system aware of the prosody and enables sentence-wise speaking pace and expressiveness control on a continuous scale. While being useful by itself in many applications, the proposed prosody control can also improve the overall quality and expressiveness of the synthesized speech, as demonstrated by subjective listening evaluations. We also propose a novel augmented attention mechanism, that facilitates better pace control sensitivity and faster attention convergence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Slava Shechtman (9 papers)
  2. Alex Sorin (3 papers)
Citations (33)