Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning U-Net Deep Learning for Lung Ultrasound Segmentation (2110.02196v1)

Published 5 Oct 2021 in eess.IV, cs.CV, and cs.LG

Abstract: Transfer learning (TL) for medical image segmentation helps deep learning models achieve more accurate performances when there are scarce medical images. This study focuses on completing segmentation of the ribs from lung ultrasound images and finding the best TL technique with U-Net, a convolutional neural network for precise and fast image segmentation. Two approaches of TL were used, using a pre-trained VGG16 model to build the U-Net (V-Unet) and pre-training U-Net network with grayscale natural salient object dataset (X-Unet). Visual results and dice coefficients (DICE) of the models were compared. X-Unet showed more accurate and artifact-free visual performances on the actual mask prediction, despite its lower DICE than V-Unet. A partial-frozen network fine-tuning (FT) technique was also applied to X-Unet to compare results between different FT strategies, which FT all layers slightly outperformed freezing part of the network. The effect of dataset sizes was also evaluated, showing the importance of the combination between TL and data augmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Dorothy Cheng (1 paper)
  2. Edmund Y. Lam (35 papers)
Citations (25)