Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Table-Based Representation for Probabilistic Logic: Preliminary Results (2110.01909v1)

Published 5 Oct 2021 in cs.AI

Abstract: We present Probabilistic Decision Model and Notation (pDMN), a probabilistic extension of Decision Model and Notation (DMN). DMN is a modeling notation for deterministic decision logic, which intends to be user-friendly and low in complexity. pDMN extends DMN with probabilistic reasoning, predicates, functions, quantification, and a new hit policy. At the same time, it aims to retain DMN's user-friendliness to allow its usage by domain experts without the help of IT staff. pDMN models can be unambiguously translated into ProbLog programs to answer user queries. ProbLog is a probabilistic extension of Prolog flexibly enough to model and reason over any pDMN model.

Summary

We haven't generated a summary for this paper yet.