Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Structural Representations for Recipe Generation and Food Retrieval (2110.01209v2)

Published 4 Oct 2021 in cs.CV

Abstract: Food is significant to human daily life. In this paper, we are interested in learning structural representations for lengthy recipes, that can benefit the recipe generation and food cross-modal retrieval tasks. Different from the common vision-language data, here the food images contain mixed ingredients and target recipes are lengthy paragraphs, where we do not have annotations on structure information. To address the above limitations, we propose a novel method to unsupervisedly learn the sentence-level tree structures for the cooking recipes. Our approach brings together several novel ideas in a systematic framework: (1) exploiting an unsupervised learning approach to obtain the sentence-level tree structure labels before training; (2) generating trees of target recipes from images with the supervision of tree structure labels learned from (1); and (3) integrating the learned tree structures into the recipe generation and food cross-modal retrieval procedure. Our proposed model can produce good-quality sentence-level tree structures and coherent recipes. We achieve the state-of-the-art recipe generation and food cross-modal retrieval performance on the benchmark Recipe1M dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hao Wang (1124 papers)
  2. Guosheng Lin (158 papers)
  3. Steven C. H. Hoi (94 papers)
  4. Chunyan Miao (145 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.