Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RAP-Net: Region Attention Predictive Network for Precipitation Nowcasting (2110.01035v1)

Published 3 Oct 2021 in cs.LG, cs.CV, and physics.ao-ph

Abstract: Natural disasters caused by heavy rainfall often cost huge loss of life and property. To avoid it, the task of precipitation nowcasting is imminent. To solve the problem, increasingly deep learning methods are proposed to forecast future radar echo images and then the predicted maps have converted the distribution of rainfall. The prevailing spatiotemporal sequence prediction methods apply ConvRNN structure which combines the Convolution and Recurrent neural network. Although improvements based on ConvRNN achieve remarkable success, these methods ignore capturing both local and global spatial features simultaneously, which degrades the nowcasting in the region of heavy rainfall. To address this issue, we proposed the Region Attention Block (RAB) and embed it into ConvRNN to enhance the forecast in the area with strong rainfall. Besides, the ConvRNN models are hard to memory longer history representations with limited parameters. Considering it, we propose Recall Attention Mechanism (RAM) to improve the prediction. By preserving longer temporal information, RAM contributes to the forecasting, especially in the middle rainfall intensity. The experiments show that the proposed model Region Attention Predictive Network (RAP-Net) has outperformed the state-of-art method.

Citations (9)

Summary

We haven't generated a summary for this paper yet.