Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
113 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
35 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Natural language understanding for logical games (2110.00558v1)

Published 1 Oct 2021 in cs.CL, cs.AI, and cs.LO

Abstract: We developed a system able to automatically solve logical puzzles in natural language. Our solution is composed by a parser and an inference module. The parser translates the text into first order logic (FOL), while the MACE4 model finder is used to compute the models of the given FOL theory. We also empower our software agent with the capability to provide Yes/No answers to natural language questions related to each puzzle. Moreover, in line with Explainalbe Artificial Intelligence (XAI), the agent can back its answer, providing a graphical representation of the proof. The advantage of using reasoning for Natural Language Understanding (NLU) instead of Machine learning is that the user can obtain an explanation of the reasoning chain. We illustrate how the system performs on various types of natural language puzzles, including 382 knights and knaves puzzles. These features together with the overall performance rate of 80.89\% makes the proposed solution an improvement upon similar solvers for natural language understanding in the puzzles domain.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.